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Abstract

We present theoretical investigations about the mechanism of ultrasound assisted atomization of liquid
sheets. Therefore a linear stability analysis of a free fluid sheet influenced by an external, harmonically
modulated excitation, in the presence of a gaseous atmosphere, is conducted. The treatment of the
hydrodynamic problem for Euler fluids shows that the temporal evolution of the free sheet surfaces can
be described by a set of two coupled differential equations with time dependent coefficients. To reach
physical relevance and obtain a more realistic fluid characterization, dissipation effects are included. The
derived equations were analyzed both analytically by means of the multiple scale perturbation method
and by numerical calculations.

Introduction

Atomization, the disintegration of a bulk liquid into
fine, preferably monodisperse droplets and the asso-
ciated mechanisms of surface magnification, is widely
used for the combustion in liquid fuel rocket propul-
sions, diesel engines or gas turbines. It is also used in
many industrial applications like spray drying, met-
all powder, mirco- and nano-particle production or
spray coating as well as to produce and deliver agent
loaded aerosoles for medical or agricultural usage.

The break-up mechanisms and disintegration pro-
cesses of liquid jets and sheets usually build up by
ducts, narrow slits or impinging jets have been anal-
ysed i.e. by Taylor [11], Li & Tankin [6], Lin [7]
and several other researchers. As a result, the ba-
sic break-up mechanism and thus the droplet sizes
are inherently dependent both on the fluid properties
and the experimental given flow rates and geometri-
cal specifications. This narrows for a present exper-
imental setup the possibilities on flexible control of
the droplet diameter only on variation of the liquid
or gaseous flow rates.

Hence ultrasound devices are used to affect the
disintegration process independent of gaseous or liq-
uid flow rates by means of an external excitation.
Several experimental investigations as well as numer-
ical aproaches using CFD (see for example [1], [10],
[5]), have been conducted showing that a destabiliza-
tion of oscillatory wave modes on the liquid sheet
surfaces is excited, which initialize sheet break up

processes, due to high frequency forcing. And thus,
the formation of ligaments and droplets is directly
influenceable by an external excitation.

In spite of the wide variety of applications and
advantages of these atomization method, the basic
physical mechanism and principles of the break-up
process have not been investigated sufficiently up to
now. In order to have a better understanding of the
ultrasound assisted fluid atomization, the stability of
a free liquid sheet in the presence of a harmonic mod-
ulated external forcing is investigated analytically.

The Hydrodynamic System

We consider a layer of a ideal, immiscible and incom-
pressible fluid with an undisturbed thickness H = 2h
which is surrounded by an assumed ideal, immiscible
and incompressible gaseous atmosphere. A surface
tension σ act between the fluid layer and the gaseous
ambiente. The fluids were externally forced due to
high frequency time variing gravitational or pressure
fields in direction perpendicular to the fluid inter-
faces. Fig. 1., 2. show the schematic setup of the
considered problem.
Starting from the basic hydrodynamic equations, the
dynamic of the fluid bulk is governed by

ρi[∂t + u · ∇]ui = −∇Πi(x, t) (1)

where the velocity field u have to fullfill the continu-
ity equation

∇ui = 0. (2)
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The subscript i = 1, 2 denotes the respective liq-
uid or gaseous fluid layers. The value ρi represents
the density of the fluids, where Π denotes body forces
generated by a external, time variing gravitational or
pressure field. Below, we don’ t have to distinguish
between modulated pressure or gravity fields, because
both act as volumina forces. Thus we choose without
loss of generality a time variing gravity field, whereas
the case of a modulated pressure field can be treaten
in the same way.

The dynamic of the interfaces ηj(x, t); j = 1, 2,
which seperate the fluid layers, is governed by the
kinematic surface condition

D

Dt
ηj(x, t) = ∂tηj + u · ∇ηj = 0. (3)

We eliminate the horizontal velocity in Eq.(1) by
multiplying with ez ·∇×∇× and performing a trans-
formation into a frame of reference that moves with
the external forcing. Thus in Eq. (1) the explicite
time dependence drops out.
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Figure 1. Sketch of a symmetrical wave mode. Initially

the liquid layer has a undisturbed thickness H = 2h,

whereas the surfaces are located at z = ±h.
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Figure 2. Antisymmetrical wave mode.

Boundary Conditions

Assuming that the fluid layers initially are stationary
and seperated by flat interfaces, we have to regard
several interfacial boundary conditions. Introducing
the notation

JXK ≡ Xi − Xj |ηk
(4)

which denotes the jump of the value X at the k-th in-
terface seperating the fluids i and j, at the interfacial
boundaries the velocity has to be continuous

JuK = 0 (5)

and the jumps of the normal stresses are balanced by
surface tension

Jρ∂tuK + JρfW (t)K = −σk4η. (6)

Here we have to remark that the boundary conditions
for the normal stresses become explicitly time depen-
dent, due to the transformation into a new frame of
reference.

Linear Evolution Equations

In the comoving frame of reference we have initially
no fluid movement, a constant hydrostatic pressure
and interfaces between the fluid layers with a plane
geometry. In order to analyse the stability of the
basic state, we linearize the hydrodynamic equations
as well as the boundary conditions around the basic
solutions u = ηi = 0. It can be shown that after
linearization the horizontal and vertical flow fields
decouple. In consequence of the fact that in linear
regime the temporal evolution of the fluid interfaces
(3) is only affected by the vertical flow field, we can
separate flows and consider only fluid movements in
z-direction:

∂t(∂zz − k2)w1 = 0, h ≤ z ≤ ∞ (7)

∂t(∂zz − k2)w2 = 0,−h ≤ z ≤ h (8)

∂t(∂zz − k2)w3 = 0,−∞ ≤ z ≤ −h, (9)

where wi is the vertical velocity in the fluid layer i
and k the wave number. Due to the requirement that
the surrounding fluid layers are of infinit high, it is
assumed that the velocity field in the outer sheets
tends to zero for z → ±∞, thus the solution of Eq.
(7) - (9) can be expressed as

w1(z, t) = A(t) exp(−kz) (10)

w2(z, t) = B(t) sinh(kz) + C(t) cosh(kz) (11)

w3(z, t) = D(t) exp(kz). (12)

After determine the unknown time dependent func-
tions A(t), B(t), C(t),D(t) by means of the linearized
interfacial boundary conditions (5), (6) and kinetic
surface condition (3) we obtain, introducing symmet-
ric and antisymmetric modes of the interface defor-
mations, denoted as ηs(t), ηa(t) and given by

ηs(t) = η1(t) − η2(t) (13)

ηa(t) = η1(t) + η2(t), (14)
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a system of coupled differential equations with time
variing coefficients:

∂2
t ηs(t) = −T s

k

[

k2σηs(t) − ρ̃fW (t)ηa(t)
]

(15)

∂2
t ηa(t) = −T a

k

[

k2σηa(t) − ρ̃fW (t)ηs(t)
]

, (16)

where we use T a = k/ coth(kh), T s
k = k coth(kh) and

ρ̃ = ρ1 − ρ2 as abbreviations.

Phenomenological Incorporation of

Viscous Damping

The movement of a real fluid leads always to energy
dissipation due to the fluids viscosity. In cases of
a small viscous dissipation and under the condition
that the velocities are not too large, one can calculate
a damping coefficient [4] by considering the ratios of
the averaged kinetic energy Ekin and the associated
averaged temporal dissipation rate ∂tEkin, where

∂tEkin = −2ρiνi

∫

(∇iuj)
2dV (17)

and

Ekin = ρi

∫

u
2dV (18)

hold. By means of the solutions (10) - (12) a damping
coefficient can be determined

γ =
1

2

∂tEkin

Ekin

= 2k2ν. (19)

To simplify matters, we have only considered the
properties of the fluid sheet, because its density as
well as its viscosity is at least up to orders of magni-
tude higher than the values of the gaseous atmosphere
and hence have a bigger influence on the damping.
After incorporation of the derived damping coeffi-
cient in the differential equation system (15), (16)
the temporal evolution equations for external forced
weak viscous fluids read

(∂t + 2γa)∂tη
a = (20)

− T a
k

[

−αηak2 − ρ̃g(1 + fW (t))ηs
]

(∂t + 2γs)∂tη
s = (21)

− T s
k

[

−αηsk2 − ρ̃g(1 + fW (t))ηa
]

Analytical treatment

The derived evolution equations (15), (16) as well
as (20), (22) can not be solved in general. Thus a
approximate analytical method is used. Assuming
that the amplitude of the external forcing is suffi-
cient small, we follow Nayfeh and Mook [9] and Mo-
hammed et al. [8], to obtain asymptotic expressions
to determine the stability of the given problem, using
the method of multiple time scales.

Introducing a smallness parameter ǫ, we can define
different time scales given by

Tn = ǫnt, n = 0, 1, 2..., (22)

where the time derivative operators can be expressed
as

d

dt
= D0 + ǫD1 + ...;

d2

dt2
= D2

0 + ǫD0D1 + ... (23)

and Dk
l = ∂k/∂T k

l hold.
Rewriting equations (15), (16) as

(∂2
t + α11)η

a + (α21 + ǫf12W (t))ηs = 0 (24)

(∂2
t + α22)η

s + (α12 + ǫf21W (t))ηa = 0 (25)

and assume that the solutions of the system (24), (25)
may be expanded in the form

ηa,s(t, ǫ) = ηa,s
0 (T0, T1) + ǫηa,s

1 (T0, T1) + . . . (26)

we substitute (26), (22) and (23), into (24), (25)
and equating like powers of ǫ. Thus we find in lowest
order

(D2
0 + α11)η

a
0 + α12η

s
0 = 0 (27)

(D2
0 + α22)η

s
0 + α21η

a
0 = 0. (28)

The solutions of (27), (28) can be sought in the form

ηa
0 =

2
∑

j

α12Aj(T1)e
iωjT0 + cc (29)

ηs
0 =

2
∑

j

(ω2
j − α12)Aj(T1)e

iωjT0 + cc, (30)

where the unknown Aj is a complex, slow variing
amplitude and cc is the abbreviation of the complex
conjugate expressions of the preceding terms. For
solvability the frequencies ωj , j = 1, 2 have to full-
fill the relation

ω2
1 =

α11 + α22

2
+

[

(α11 − α22)
2 + 4α12α21

]
1

2

2
, (31)

and

ω2
2 =

α11 + α22

2
−

[

(α11 − α22)
2 + 4α12α21

]
1

2

2
. (32)

Substituting the solutions (29), (30) into the first
order expansion of the system, given by

(D2
0 + α11)η

a
1 + α12η

s
1 = (33)

−2D0D1η
a
0 + f12W (T0)η

s
0

(D2
0 + α22)η

s
1 + α21η

a
1 = (34)

−2D0D1η
s
0 + f21W (T0)η

a
0 ,
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we choose

ηa
1 =

2
∑

j

α12Bj(T1)e
iωjT0 + cc (35)

ηs
1 =

2
∑

j

(ω2
j − α12)Bj(T1)e

iωjT0 + cc, (36)

as solutions, due to the structure of the lhs of Eqs.
(33), (34). Taking into account the conditions (31),
(32) this choice yields to requirements for the com-
plex coefficients Aj of the zero order solution which
build the secular terms on the rhs of the first order
expansion (33), (34):

2
∑

j

−2iD1α12ωjAj(T1)e
iωiT0 − (37)

f12(ω
2
j − α11)Aj(T1)e

iωiT0W (T0) + cc = 0

2
∑

j

−2iD1(ω
2
j − α11)Aj(T1)e

iωiT0 − (38)

f21α12Aj(T1)e
iωiT0W (T0) + cc = 0.

As a consequence of the ansatz (35), (36) and de-
pending on the external forcing W (T0), the secular
terms have to vanish.

In order to solve the problem of a high frequency,
ultrasonic excitated fluid sheet, we specify the exter-
nal periodic forcing term as W (T0) = cos(2ΩT0), and
hence the differential equations (15), (16) as well as
(20), (22) become coupled equations of the Mathieu-
type. We restrict our analytical treatment on the case
of main resonance, which appears, if the stimulation
frequency Ω approaches ω1 or ω2. Treating the case
Ω ≈ ω1, where the second case with Ω ≈ ω2 could be
easily received by means of the substitution ω1 → ω2,
we introduce a detuning parameter σ which is given
as

ǫσ = ω1 − Ω. (39)

The incorporation of Eq. (39) in Eqs. (37), (37)
leads, under the assumption ω2 ≫ ω1 and after the
neglect of high frequency terms, due to the Rotat-
ing Wave Approximation, to relations for the elim-
ination of the secular terms. After some algebraic
calculations it can be derived that the slow variing
amplitude A1(T1) has to fullfill the equation:

D1A1 = i
α21f21 + f12(ω

2
1 − α11)

2ω1(ω2
1 − (α11 − α12))

Ā1e
i2σT1 (40)

where Ā1 denotes the conjugate complex amplitude.
In order to solve Eq. (40) we separate A1 into its real
and imaginary part

A1 = (u + iv) exp(iσT1). (41)

and substitute (41) into (40). Equating the derived
expressions into real and imaginary values, we obtain
two differential equations for u and v:

D1u =

(

α21f21 + f12(ω
2
1 − α11)

2ω1(ω2
1 − (α11 − α12))

+ σ

)

v (42)

D1v =

(

α21f21 + f12(ω
2
1 − α11)

2ω1(ω2
1 − (α11 − α12))

− σ

)

u (43)

Using the ansatz

u = ξ exp(λT1) (44)

v = ζ exp(λT1), (45)

we obtain the amplitude (41)

A1 = (ξ + iζ) exp((λ + iσ)T1). (46)

Thus the system is stable if λ < 0, with

λ = ±

√

(

(ω2
1 − α11)f12 + α12f21

4ω1(ω2
1 − α11 + α12)

)2

− σ2. (47)

In the case of critical system behaviour λ has to van-
ish. This requirement leeds to

σ1,2 = ±

(

(ω2
1 − α11)f12 + α12f21

4ω1(ω2
1 − α11 + α12)

)

. (48)

Hence the transition curves are given by the expres-
sions

Ω = ω1 + ǫσ1(ω1) (49)

Ω = ω1 + ǫσ2(ω1). (50)

The stability relations in the case of weak vis-
cous fluid sheets can be derived by asumming a small
damping given by γ = ǫΓ. This leads to the system

(∂2
t + ǫ2Γ∂t + α11)η

a + (α21 + ǫf12W (t))ηs = 0 (51)

(∂2
t + ǫ2Γ∂t + α22)η

s + (α12 + ǫf21W (t))ηa = 0 (52)

which can be treaten as in the preceding calculations.

Numerical Treatment

To confirm the approximative analytical calculations,
we examine the derived evolution equations (15), (16)
and (20), (22) by numerical means.
Because we consider a time periodic excitation with
period 2π/Ω given by W (t) = cos(2Ωt), one can as-
sume, as a result of the Floquet Theory, that the
solutions of the considered equations are also time
harmonic functions, having the form

ηi(t) = eλtη̃i(t), η̃i(t) = η̃i(t+2π); i = s, a (53)

Following Beyer & Friedrich [3], we expand the peri-
odic functions η̃i(t) into Fourier series

ηi(t) = e(λ+iµ)t lim
n→∞

N
∑

n=−N

ηi
neinΩt (54)
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and obtain an infinite dimensional algebraic set of
equations for the amplitudes of the wave modes

As
nηs

n = α12η
a
n + ǫf12

N
∑

n′=−N

Wn,n′ηa
n′ (55)

Aa
nηa

n = α21η
s
n + ǫf21

N
∑

n′=−N

Wn,n′ηs
n′ , (56)

where the coefficients As
n, Aa

n are given as

As
n = 2

[

{λ + i(µ + nΩ)}
2

+ α11

]

(57)

Aa
n = 2

[

{λ + i(µ + nΩ)}
2

+ α22

]

(58)

and the excitation terms leads to

Wn,n′ =
1

2π

∫ 2π
Ω

0

dτei(n−n′)ΩτW (τ). (59)

The truncation of the Floquet ansatz at a finit but
adequate high value of N leads to a linear, finite-
dimensional eigenvalue problem. Further on, to ob-
tain critical behavior of the system, we have to de-
mand λ = 0 in Eqs. (57), (58) and choose µ = 0
or µ = 1/2 to calculate the stability branches for the
harmonic or subharmonic solutions, respectively. Ap-
plying this we can numerical solve system (55), (56)
and determine the critical forcing amplitude ǫ = fc

by means of standart routines.

Results and Discussion

With the analytical derived expressions (49), (50)
we are able to calculate the instability branches
for a free liquid sheet under an harmonic high
frequency, ultrasonic excitation. For the subse-
quent considerations we have used the fluid pa-
rameters of water to model the fluid sheet and
the values of air for the surrounding gaseous at-
mosphere. A thickness of h = 1e−3 cm for the
fluid sheet was selected and a forcing frequency was
choosen as Ω/2π = 50 kHz. Figure 3. shows the
results of the multiple time scale approximation.
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0

40000

fc

sub harm

asas sysy

k
ˆ

cm−1
˜

Figure 3. Analytically calculated stability regions of an

ideal fluid sheet. fc denotes the scaled critical forcing

amplitude and k the wave number in
ˆ

cm−1
˜

. Transi-

tion curves of the subharmonic solutions are termed as

“sub” whereas the branches of the harmonic solution are

denoted by “harm”. The substructures belonging to the

antisymmetric “as” or symmetric “sy” wave modes re-

spectively.

As in the case of the classical Faraday Insta-
bility [2], the (fc, k)-plane is seperated in different
tongue-like regions, belonging to the subharmonic
and harmonic solutions. As a result it can be seen,
that the harmonic as well as the subharmonic tongue
has a substructure. The solvability relations (31),
(32) allow to distinguish between tongues belonging
to the antisymmetrical and the symmetrical wave
modes, respectively.

500
k 

0

40000

fc

Figure 4. Influence of damping on the stability regions

of a fluid sheet. The transition curve with red dots (•) be-

longs to the undamped fluid sheet whereas the curve with

black crosses (+) belongs to the subharmonic solution of

antisymmetrical wave mode of the the damped system.
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Due to the neglect of viscosity, we see that the
tips of the instability zones reach the axis of abscis-
sae. This means in the physical interpretation, that
infinitesimal small forcing amplitudes can destabilize
the fluid sheet and thus initialize sheet break up.
This quite unphysical result was revised due to the
phenomenological modelling of viscous dissipation
effects. The incorporation of damping terms into the
system leads to a excitation threshold as shown in
Fig. 4. and thus a finite (critical) forcing amplitude
is necessary to excite waves on the fluid sheet.

Figures 5. and 6. show the numerical calcu-
lated stability regions. The obtained results confirm
the analytical considerations. Furthermore one can
see that the harmonic solutions are in general more
damped then the subharmonic ones, whereas exci-
tation of symmetric wave modes need a higher forc-
ing amplitude compared to the antisymmetric wave
modes. As a result subharmonic, asymmetric waves
are the most unstable, because their critical thresh-
old is the lowest one.
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Figure 5. Numerical calculated stability regions of an

undamped liquid sheet
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Figure 6. Influence of damping on the stability regions

of a fluid sheet. The critical wave number kc belongs to

the minima of the tongues

It has to be pointed out, that the interpretation of
the subtongues as instability regions belonging to the
antisymmetric and symmetric wave modes was only
possible by means of the analytical calculations.

Conclusion

We have derived the basic equations describing the
external excitation of the surfaces waves of a free
liquid sheet in a gaseous atmosphere. Thereby we
have shown that the linear stability analysis leads
to a set of coupled differental equations with time
dependent coefficients. The equations have been ex-
tended, due to the inclution of viscous dissipation
effects. Considering an external excitation in the
form W (t) = cos(2Ωt), the differential equations sys-
tem becomes coupled equations of the Mathieu-type.
These equations have been solved analytical as well
as numerical. The results of the calculations show
that the instability zones for a thin liquid sheets un-
der an external harmonic forcing splits into branches
for the symmetric and antisymmetric surface wave
modes for subharmonic and harmonic solutions re-
spectively. This result shows that the principal mech-
anism of ultrasonic assisted fluid atomization is given
by parametric resonance.
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